PROBLEM OF CONTROL OF THE LEVEL OF GROUND-
WATER DURING IRRIGATION FOR THE THREE-DIMENSIONAL
CASE

N. N. Kochina ' UDC.532.54

In (1], the problem concerning the control of the level of groundwater during irrigation is considered. It
is solved on the assumption that the surface of the ground flow is weakly curved, the watertight layer is weakly
permeable, is level, and has a constant thickness M;, and that the groundwaters occupy the region between two
parallel channels or drains.

It will be interesting to solve the similar problem in the two-dimensional region between four channels
forming the rectangle 0 <x=<J, 0<y=<1L. This solution is obtained in this paper in explicit form.  this case,
the following method of controlling the level of groundwater can be represented as follows: irrigation, pro-
ducible with intensity me/6, ceases when the level of the groundwater, measured at a fixed point 0<x"<7 ,
0=y%<1L of the region between the channels, reaches a quantity h, , and begins again when h(x?, t) becomes
equal to hx x<hy (0< 6 <1). This problem reduces to solving the equation

%=a (g—;—’;+g—2y1;)—b(h—~H)+F[h(z°, ¥, 9l @.1)

where

[ ¢ for R(a® 3% 1) <Thy - (1.2)

¢ 0 =
Fih(% gy )= |—d for h(a®, y° ) >hes

(the notation is the same as in [1]; 6 is the ratio of the intensities of filtration and wetting), with a certain
initial condition and boundary conditions (Fig. 1)

hz, 0, 8) = h(z, L, {) = Hy + (H, — H,)-2/l, .3)
RO,y,t) = Hy, B, y, 1) = H,.
We put
Mz, y, t) = H, + (H, — H)-z/l + ulz, y, 1). (1.4)
For U(x, y, t), we obtain the equation
% az(gi;f+g;_§)—b[Hl—H L (H,— Hy) %} va + F (&), | (L.5)

where E(u) is given by formulas (1.2) and (1.4) with the conditions

Uz, 0,8) =z, L, 1) =00, y, 1) = ul, y, t) = 0. (1.6)

It can be seen that Eq. (1.5) with conditions (1.6) has stable stationary solutions

S w
v(z, y) = 2 B [shhA, (y — L) — sh A,y -+ shi,L}sinZZ,
hmi

oo

(2)
©
w(z, )= Eﬁ;z [shA, (¥ — L) - sh Ay + sh A, L] sin &2,

k=1
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, —(— 1)k _ — 0 R
M=TEL, L u;9:2{[ (—1)* 1] {e, — b (Hy— H)] + b (H, — Hy) (—1) } @

2 ? ~
@ mzhf!k'

cg=¢ Cy=—d.

The periodic solution of Eq. (1.5) with the conditions (1.6) has the form

L@y )=v@ )+ 3 D Cimexp(— Al nt) sinﬂlz- -sin T8 (0t Ty,
m=t Bt

o . (1.8)
tp@p ) =w(@ N+ T 3 Dimexpl—Aim¢—T)] sin %2 . sin T (1, <t<T),
where we introduce the notation
Chm ___BM Dim 9hm(1“5h m) ) (1.9
1— Gk n ah -

Mym = nla? (’;2 Li:‘) + b;
Bem = exp(— hi,mTI); Vem = exp[— le;m (T — Tl)], B, = Bo,mVr.mo

dlet+ ) l(—1)*F— 1l(—ym —1] m
27, —
na kl]% {L (A’z'i“ n2,;,2)

eh,m = —

g
—

Here T is the period of self-oscillation; T, is the duration of the wetting stage. The constants T, and Ty=T -
T, are defined as the smallest roots of the system of two equations

ul(x", yf’, T) = 7 uz(-’bo, ¥, Ty = Ugy- (1.10)
In view of Eq. (1.8), Eq. (1.10) reduces to the form

2 2 Cy mﬁkmsm-r. 5111’1[—11—‘1’n =U,, (1.11)

-4 [~
. wkx® . :rtmy
2 2 Dy, m¥n,m sin = sin =% = Ugx.
k=1 m=1

Here, for brevity, we introduce the notation
Uy = uy —v(2® oY, Uge = Ii** — w(z®, ¥%). (1.12)
Using Egs. (1.12) and (1.9), we rewrite formula (1.11) in the following form:
Ty, Ty = Uy, BTy, To) = U,,.

Here we denote

o -~
~ 0, mbr,m (1 —Tn,m) ik 0
_— k,mbe,m hm _a:_ amy
B(Ty, Ty) = :Zi P e (1.13)
~ N\ 1—p Tz my®
(T1, To) = 2 i k mvi'i(tﬁh bz) i T - sin—7 -
k=1 m .

me=1

oo

Expanding the double series § = Y ¢ in the form of an infinite rectangular matrix, we then represent
m,h=1

its terms in the form of a simple sequence as far as the squares:
S = p§1 @p, whereby a® = ap.
Here P=(k—1)2+m when m=<k and p=m?+1 -k when m> k. We represent the double series in formulas

(1.13) in the form of regular series

o

(T3 T9) = Z ay (T3, T, $(T0, o) = Fbp (T, T,

232



where

@ = — 6, mﬁk m {1V m) sin nkz® . sin my®,
P 1—0pm [ L
by — O, mVu,m (1 — ﬁh,m) sin wkz® . sin nuny®
p= T84 1 L

In formulas (1.13) we put T=yT,(v=1), we obtain ¢(0, 0) = I(v — 1)/v10(2®, y?);%(0, 0) = (1/v) 8x", v,
(6 %, ¥y =v(x, y)-w(x, y)). Graphs of the.dependences

Y = ga¥l(c + QP <0, Z = Ya¥(c + P > 0

on T'1=a 2T,/12 are shown in Fig. 2, where curves 1-3 correspond to the values v =4/3, » =2, and » =4, re-
spectively. The solid curves correspond to the value b' =0, and the dashed curves correspond to b'=1/60 (b' =
bl 2/a?d. It is clear from the form of these curves that to a pair of values of @ and §, such that - 6 x°, y%<
$<0,0<J <0 y9, and § ~¢ <6 x°, y9, there corresponds in an unambiguous way a pair of values T,> 0 and
v (or values T >0 and T, > 0). Consequently, to each pair of values ux and u, 4, such that w(x?, y% < ux & <u, <
v(x?, y%, there corresponds a single pair of values T;> 0 and T,> 0.

§2. We shall consider the solution of the initial value problem (1.1) and (1.2) with the conditions (1.3) and
the starting condition

Wz, y, 0) = oz, ) @.1)
or (which is the same), the problem (1.5) and (1.2) with the conditions (1.6) and
uz, y, 0) =9, ) Oz, ¥) = oz, y) — H, — (H, — H)-all). 2.2)

If the solution of this problem exists, then it has a form similar to Eq. (1.8):

~i Sl : (i . k.
™ (2, g ) = v (z, y) - Zi kEi CLHED exp[—-lzzz,m (t— 1')]sin Ei—z sm% @.3)
e

(T'(i) <I<< T-'i(i‘{'i)’ T'(i) Z T(J) T} (i) =T (1) + T(1+i)

=
1=0,1,2,3,..., 7@ =0),

4 7t . k. . aumy
U @y, ) =w(z, g+ > S‘ DAY exp[— My (£ — T ]sin 57 - sin =72

(Tf“’k < T,

Here ch,’m are the coefficients of the Fourier function ¢ (x, y) —v(x, y):

[ L
= liL bs. og‘ Wz, v) —vz, yI smﬂ sin & yd.sz, (2'4)

Gg:;) i=0,1,2,...) and Dle) (i=0, 1, 2, ...) are the coefficients of the Fourier functions u1( )(x Y, T’(l))

VX, y) and T U, @+ 1)(x Vs T'(”‘)) “w(x, y), respectively; T1(1+1) and T(1 1) are smallest roots of the
~(1_]_1) (.z° o, T (z+1)) = Uy U ~(1+1)(x0' v, r (’l-+1)) = Uy (2.5)

Formulas (2.3)-(2.5) are valid for the case 3 (x0, y9< ux.

8

Fig. 1
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Fig. 2

It is shown in [2] that the problem, similar to Egs. (1.1)-(1.3) and (2.1), for the case when the groundwater
occupies the region between two parallel channels or drains, is characterized by four cases. It can be shown
that the problem (1.1)-(1.3), (2.1) also is characterized by four cases;

e < D2, 1) < 0@, §) < uy;
W, YY) <ty < V(% ¥) < uy;
Upe < (20 ¥°) < 1y < (20, 3);
w(2°, %) < Ugye << Uy < 0 (29, §°).

In accordance with the results obtained in [2], in the first three cases there is a value of s such that

T > 00 or T(i+) - co. The corresponding formulas (2.5) (first or second) for i+1=s in this case are in-

i>s i>s -
valid. For the fourth case, formulas (2.3)-(2.5) are valid for any values of i and give an oscillating solution.
Similar formulas are valid also for the case ¥ (x, y%>u,. Thus, in the fourth case, an optimum regime of ir-
rigation is obtained: owing to the fluctuations of the groundwater level between values less than ve (X, y) and
greater than w, (%, y) , where, in accordance with Eqs. (1.4), (1.7), and (1.8), we denote

wc(x,: y) == H1 + (Hz —_ Hl)'m/l + W(x, y); UC(‘zﬂ y) = Hl + (H2 i Hl)'x/l+ U(I, y)r

an excessive rise of the groundwater level should be avoided and, consequently, salinization and an excessive
lowering of this level, i.e., depletion of the water-bearing stratum. For this, it is sufficient to choose hx and
‘hy % so that the fourth case is valid:

welz®, ¥°) < hyy < h* < vz, ¥).

Let us dwell in more detail on the fourth case, and let us show that with an unlimited increase of time the
solution of Eq. {2.3) of the problem tends to the periodic solution of Egs. (1.8) and (1.9).

It is clear that the equations

~i s ~s "t
u*tV (2, y, 7)) = "uf* (a, y, 1Y), (2.6)
—~s i —~ps it R
u§1+1) (:1:, v, T <1+1)) _ ui(H'z)(:IJ, y, T (i ))

must be satisfied. Introducing the notation »
G50 = exp(— D T9), 2150 = oxp[— 2 (1949 — 7§+0)],

(1+2) (i+1),

Dk

we rewrite conditions (2.6) in order to find the constants C in the following way:

D(1+1) ﬁ(1+1)c(1+1) + ek o

i+2 +1 +1
C(;:,m) — 'Y(;,m)D(}z, )

2.7)
m ek,m (gk,m = Up,m — Wh,m)-

Eguations (2.7) have the same form as the analogous equations obtained in [1]; therefore, for the coefficients
H-n} and Dlgl +n11) similar recurrent formulas are valid, taking account of which Eq. (2.5) assumes the form
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|5§”” — 5(10) + 23 Ap {(ﬂgiﬂ))up[l . (Ygi))up s (Y{i)ﬁgi))up 4. —
=
— (B OB LB 1) S — (B Yo (B
o R (BT ) IR — (BT (BT PR T,
. (2.8)
‘Y(iiH) — ‘Y(io) + p§3 Bp {(v(ii-l-i))up[,l _ ([3(1i+1))p.p 4 (ﬁ(li+1)ygi))up -

B (BETORD D) 2 D (BEFD YRR [ — (30 -

o s o s et x i s i) 1 =
OB — PRV Pl S [ — GE Pl (B B T
p=2
Here we denote
Loomad oy
A=y —w(2° y°) — 61 8in —=sin %,
0 0
B==uy—v(z® y) 4651 Sinﬂi— sin “%,

© = iy — v (2 ¥4, 11" = [tgs — w (2%, y)V/B,

. akx® . ;my®
Ap,m = Bg,m sin —— sin y/A,

1 L
o mka® 0
By m = — Ox,msin -—-l-z— sin n% /B,
. omkx® . 0
Eﬁi,)m = C,(f)m sin —l—’c sin 7—1-'—21,

T = ESDIA, Thm = ESD0/B,
ﬁ(pi+1) _ ﬁ%ffn”, Y%ﬂ—i) — ?’(;:‘;:';1), Ap e Ak’mv
TD T By= By C0 = T (p=1,2...),
B = (B0 Phm, 9t = [y 0],

Ay o \2
Mk,m:(‘x’;’i‘:) (kom=1,2..., fp = fp,m (p=1,2..).

For this, it is assumed that A =0 and B =0.

Equations (2.8) coincide with Eqs. (3.1) and (3.2) of [1] for the plane case. Because of this, all further
reasoning given in [1] concerning estimates of the quantities Byin, Ymin» Y maxs 224 Bmax, Which can be found
by the method of successive approximations, and concerning the estimates of the average values of the arbitrary.
functions entering into the right-hand side of Eq. (2.8), remains valid. T this case, in the first of formulas '

(3.4) of [1], q=(BmaX'ymaX)"‘3, it is necessary to put pg=min(y,, 3, Hs, 1).

. In a similar way, the result also is obtained concerning the trend as i — = of the quantities 'Bi(l +1) and
'y? *9 t5 the limits By and 4, where B and v, are the quantities considered above — f;=exp(-Al T,) and¥;=
exp[—hf’i(T — T,)] — for the periodic solution of Eqs. (1.8) and (1.9).

The cases when one of the two equations A =0 and B=0, or both at once, is satisfied are considered
similarly. 4
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